Gillibrand Primary School

Maths Calculation Policy Division

Written September 2018

By Mrs H Clark

Deputy Head and Maths Subject Lead

Abstract

Aims We believe that all children require a solid understanding of place value and the number system, which, together with the knowledge and recall of number facts and mental strategies, act as the foundation for mathematical development.

Calculation strategy development is vital to our teaching and learning strategy, being viewed as the tools for our children's future successes in applied application.

In order to ensure a deep understanding of number and calculation, we use the 'concrete, pictorial, abstract' approach to ensure all pupils develop a deep understanding of maths that is essential for developing mastery in mathematics. As such, our calculation policy is based on this approach whilst ensuring progression and continuity in mathematical calculation across school.

The Concrete Step:

The concrete stage is the physical doing stage. During this stage pupils use concrete objects. In this way bringing mathematical learning to life

The Pictorial Step:

The pictorial stage is the 'seeing' stage. Visual representations of concrete objects are used to support leaning. This supports children making a mental connection between the physical object and the pictures, diagrams or models.

The Abstract Step

Abstract is the 'symbolic stage', where children use only numbers, notation and mathematical symbols to indicate addition, subtraction and multiplication.

Reasoning and Problem Solving:

Once children are fluent in the calculation strategy for their year group, we deepen and embed understanding through providing children with a range of reasoning and problem solving skills that allow the children to show their full understanding in a range of different context.

> Although our policy is set out based on The National Curriculum year group expectations, children work through the calculation policy systematically. Some children may therefore be working below year group expectation and should be taught the method appropriate for their individual stage in learning.

Calculation Policy: Division

Key Vocabulary: share, divide, remainder, divisor, factor, quotient

EYFS

Children will understand equal groups and share items out in play and problem solving.
They will count in $2 s$ and $10 s$ and later in 5 s.

Year 1 - Solve simple one-step \div problems using objects, pictures and arrays with my teacher's help.

| Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |

Year - Solve divin pobe ind		

Year 2-Solve division problems, including problems in context, using apparatus if required.

Concrete
Children will develop their understand of division and use jottings to support calculation. They will share equally using 6 sweets shared between 2 people, how many do they each get? They will use counters, cubes or any other physical apparatus to share.

> 1 have 10 cubes, can you share them equally in 2 groups?

Children will also use and explore the method of grouping using the physical apparatus as above or a bead string.

Link division to multiplication by creating an array and thinking about the number sentences that can be created.
$\operatorname{Eg} 15 \div 3=5 \quad 5 \times 3=15$
$15 \div 5=3 \quad 3 \times 5=15$

Abstract
$12 \div 3=4$
ties.

Children use bar modelling to show and support understanding.

Children use a number line to look at repeated addition and 'groups of'
$12 \div 3=4$

Year 3-Write and calculate mathematical statements for division using known multiplication facts. Solve x and \div problems, including missing number problems.

24 divided into groups of $6=4$

$$
96 \div 3=32
$$

Link division to multiplication by creating an array and thinking about the number sentences that can be created.

```
Eg 15\div3=5 5 < 3=15
    15\div5=3 3 < 5 = 15
```

$14 \div 3=$
Divide objects between groups and see how much is left over

Jump forward in equal jumps on a number line then see how many more you need to jump to
find a remainder.

Draw dots and group them to divide an amount and clearly show a remainder.

Draw an array and use lines to split the array into groups to make multiplication and division sentences

Example vithout remainder
$40-5$
Ask "How many 5s in 40?
Example vith remainder
$38+6$

06121824303638
For larger numbers, when it becomes inefficient to count in single multiples, bigger jumps can be recorded using known facts.

Use bar models to show division with remainders.

Abstract

Find the inverse of multiplication and di sentences by creating eight linking num sentences.
$7 \times 4=28$
$4 \times 7=28$
$28 \div 7=4$
$28 \div 4=7$
$28=7 \times 4$
$28=4 \times 7$
$4=28 \div 7$
$7=28 \div 4$

How many groups of 6 in
$24 ?$
$24 \div 6=4$

Complete written divisions and show the remainder using r .

$$
\begin{gathered}
29 \div 8 \\
\uparrow \\
\uparrow
\end{gathered}=\underset{\uparrow}{3} \text { REMAINDER } 5
$$

dividend divisor quotiont remsinder

Year - Divie a		

Year 4 - Divide a two digit number by a one digit number using an efficient written method.

	Concrete	
$96 \div 3$	Tens	Units
	3	2
3	\bigcirc - \bigcirc	- ${ }^{\text {P }}$
	$\bigcirc \bigcirc$	-
	$\bigcirc \bigcirc \bigcirc$	-

Use place value counters to divide using the bus stop method alongside

Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over.

We exchange this ten for ten ones and then share the ones equally among the groups.

We look how much in 1 group so the answer is 14 .

Abstract
7 r 3
5) 38
-35
3

Encourage them to move towards counting in multiples to divide more efficiently.
$3 \longdiv { 5 9 }$
-3.
29
27

Year 5 - Divide numbers up to 4 digits by a 1 digit number using short division written method and interpret remainder appropriately for the context

Concrete Pictorial	Abstract
Once the children are confident at dividing a 2digit number by a 1 -digit number and have been given the precious concrete and pictorial experiences most children will not need the concrete and pictorial approach.	Begin with divisions that divide equally with no remainder. Move onto divisions with a remainder. Finally move into decimal places to divide the total accurately. $0663 r 5$ $8 \longdiv { 5 ^ { 5 } 3 ^ { 5 } 0 ^ { 2 } 9 }$

Year 6 - Use written division methods in cases where the answer has up to 2 decimal places.
Divide numbers up to 4 digits by a 2-digit whole number using formal written method of short division where appropriate, and interpret remainders as whole number remainders, fractions or by rounding, as appropriate for the context.

Concrete ${ }^{\text {Pictorial }}$	Abstract
Once the children are confident at dividing a 2digit number by a 1 -digit number and have been given the precious concrete and pictorial experiences most children will not need the concrete and pictorial approach.	$\begin{aligned} & \text { h10 } \\ & 041 \mathrm{R} 1 \\ & \hline 4 \longdiv { 1 6 5 } \end{aligned}$ 4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160). 4 goes into 16 four times. 4 goes into 5 once, leaving a remainder of 1. $\begin{gathered} \text { thhto } \\ 0400 \mathrm{R7} \\ \hline 3207 \end{gathered}$ 8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds $(3,200)$ 8 goes into 32 four times $(3,200 \div 8=400)$ 8 goes into 0 zero times (tens). 8 goes into 7 zero times, and leaves a remainder of 7 .

Remainders should also be written as decimals.

$$
4 \begin{array}{r}
n t o \\
061 \\
247 \\
\frac{-4}{3}
\end{array}
$$

When dividing the ones, 4 goes into 7 one time. Multiply $1 \times 4=4$, write that four under the 7 , and subract. This finds us the remainder of 3 .

Check: $4 \times 61+3=247$

When dividing the ones, 4 goes into 9 two times. Multiply $2 \times 4=8$, write that eight under the 9 , and subract. This finds us the remainder of 1 .

Check: $4 \times 402+1=1,609$

15 into 8 doesn't go. so look at the next digit.

15 goes into 86 five times, so put a 5

$$
\text { above the } 6 \text {. }
$$

$15 \times 5=75$
Take that 75 away from the 86 to get your remainder
$86-75=11$

Next, carry the 4 down to make 114 .
15 goes into 114 seven times, so put a
7 above the 4
$15 \times 7=105$
Take 105 from the 114 to get your
remainder
$114-105=9$

Carry the 0 down to make 90
15 goes into 90 exactly 6 times, so put a 6 above the 0
$15 \times 6=90$
$8,640 \div 15=576$

